Có hai túi kẹo. Túi I có 3 chiếc kẹo sô cô la đen và 2 chiếc kẹo sô cô la trắng. Túi II có 4 chiếc kẹo sô cô la đen và 3 chiếc kẹo sô cô la trắng. Từ túi I lấy ngẫu nhiên một chiếc kẹo. Nếu là chiếc kẹo sô cô la đen thì thêm 2 chiếc kẹo sô cô la đen vào túi II. Nếu là chiếc kẹo sô cô la trắng thì thêm 2 chiếc kẹo sô cô la trắng vào túi thứ II. Sau đó từ túi II lấy ngẫu nhiên một chiếc kẹo. Tính xác suất lấy được chiếc kẹo sô cô la trắng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi A là biến cố: “Lấy được chiếc kẹo sô cô la đen từ túi I”
B là biến cố: “Lấy được chiếc kẹo sô cô la trắng từ túi II”.
Ta có: P(A) = \(\frac{3}{5}\), P(\(\overline A \)) = \(\frac{2}{5}\).
Nếu A xảy ra tức là lấy được chiếc kẹo sô cô la đen từ túi I thì thêm 2 chiếc kẹo sô cô la đen vào túi II. Khi đó túi II có 9 chiếc kẹo với 6 chiếc sô cô la đen, 3 chiếc kẹo sô cô la trắng.
Nếu A không xảy ra tức là chọn được chiếc kẹo sô cô la trắng từ túi I thì thêm 2 chiếc kẹo sô cô la trắng vào túi II. Khi đó túi II có 9 chiếc kẹo với 4 chiếc sô cô la đen, 5 chiếc sô cô la trắng.
Vậy P(B | A) = \(\frac{3}{9}\), P(B | \(\overline A \)) = \(\frac{5}{9}\).
Theo công thức tính xác suất toàn phần, ta được:
P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \))
= \(\frac{3}{5}.\frac{3}{9} + \frac{2}{5}.\frac{5}{9} = \frac\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |