Trong không gian hệ tọa độ Oxyz cho mặt phẳng (P): x – y + 2z – 2 = 0 và 2 điểm A (2; 3; 0); B (2; – 1; 2). Tìm điểm M thuộc mặt phẳng (P) sao cho \(\left| {MA - MB} \right|\) lớn nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đặt phương trình dạng: f = x – y + 2z – 2
⇒ f(A) . f(B) = ( –2). 5 = −10 < 0 nên A, B nằm hai phía khác nhau so với mặt phẳng (P).
A’ là điểm đối xứng của A qua (P) có phương trinh đường thẳng AA’: \(\frac{1} = \frac{{ - 1}} = \frac{z}{2}\)
Gọi I là điểm đường thẳng AA’ và mặt phẳng (P) có: I (2 + t; 3 – t; 2t) ∈ (P)
⇒ t + 2 + t – 3 + 4t – 2 = 0 \( \Leftrightarrow t = \frac{1}{2}\)
\( \Rightarrow I\left( {\frac{5}{2};\,\,\frac{5}{2};\,\,1} \right)\) ⇒ A’ (3; 2; 2).
\(\left| {MA - MB} \right| = \left| {MA' - MB} \right| \le A'B\)
\( \Rightarrow \left| {MA - MB} \right| = A'B\)⇔ A’; B; M thẳng hàng.
Phương trình đường thẳng A’B: \(\left\{ {\begin{array}{*{20}{c}}{x = 3 + a}\\{y = 2 + 3a}\\{z = 2}\end{array}} \right.\)
Mà M = A’B ∩ (P)
Vậy \(M = \left( {\frac{9}{2};\,\,\frac{2};\,\,2} \right)\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |