Cho ∆ABC vuông tại A (AB < AC), đường cao AH. Trên cạnh BC lấy điểm M sao cho BA = BM.
a) Chứng minh AM là tia phân giác của \(\widehat {HAC}\).
b) Gọi K là hình chiếu vuông góc của M trên AC. Chứng minh AM là trung trực của HK.
c) Gọi I là hình chiếu vuông góc của C trên tia AM. Chứng minh AH, KM, CI đồng quy.
d) Chứng minh AB + AC < AH + BC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a. Chú ý \(\widehat {BAM} = \widehat {BMA}\)
Từ đó \(\widehat {CAM} = \widehat {HAM}\) nên AM là tia phân giác của \(\widehat {HAC}\)
b. Dùng kết quả ý a chứng minh được AH = AK, MH = MK. Do đó AM là trung trực của HK.
c. Chú ý AH, KM, CI là 3 đường cao của ∆MAC.
d. Chú ý AH = AK, AB = BM, từ đó ta có: AC – AH = CK < CM = BC – BA
⇒ AB + AC < AH + BC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |