Cho hình chóp tam giác đều có đáy là tam giác đều cạnh a (cm) và chiều cao 10 cm.
a) Tính diện tích đáy S của hình chóp theo a.
b) Từ kết quả câu a, tính thể tích V của hình chóp theo a và tính giá trị của V khi a = 4 cm.
c) Nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp thay đổi thế nào?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Áp dụng định lí Pythagore, ta tính được chiều cao của tam giác đều cạnh a là
\({h_1} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \sqrt {\frac{{3{a^2}}}{4}} = \frac{{a\sqrt 3 }}{2}\) (cm).
Diện tích đáy S của hình chóp là \(S = \frac{1}{2}a.{h_1} = \frac{1}{2}a.\frac{{a\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{4}\) (cm2).
b) Thể tích của hình chóp tam giác đều là
\(V = \frac{1}{3}S.h = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.10 = \frac{{5\sqrt 3 }}{6}{a^2}\) (cm3).
c) Chiều cao mới của đáy là
\({h_{moi}} = \sqrt {{{\left( {\frac{a}{2}} \right)}^2} - {{\left( {\frac{a}{4}} \right)}^2}} = \sqrt {\frac{{{a^2}}}{4} - \frac{{{a^2}}}} = \frac{{a\sqrt 3 }}{4}\) (cm).
Diện tích đáy mới là \({S_{moi}} = \frac{1}{2}.\frac{a}{2}.\frac{{a\sqrt 3 }}{4} = \frac{1}{4}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{1}{4}{S_{cu}}.\)
Suy ra \({V_{moi}} = \frac{1}{3}{S_{moi}}.h = \frac{1}{3}.\frac{1}{4}{S_{cu}}.h = \frac{1}{4}{V_{cu}}.\)
Vậy nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp giảm đi 4 lần.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |