Một phòng họp lúc đầu có một số dãy ghế với tổng cộng 40 chỗ ngồi. Do phải sắp xếp 55 chỗ ngồi có một cuộc họp nên người ta kê thêm một dãy ghế và mỗi dãy ghế xếp thêm một chỗ ngồi. Hỏi lúc đầu có mấy dãy ghế trong phòng họp đó?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi số dãy ghế trong phòng họp lúc đầu là x (dãy). Điều kiện: x > 0; x là ước của 40.
Số chỗ ngồi ở mỗi dãy ghế lúc ban đầu là \(\frac{x}\) (chỗ ngồi).
Số chỗ ngồi ở mỗi dãy ghế sau khi kê thêm một dãy ghế là \(\frac\) (chỗ ngồi).
Theo đề bài, ta có phương trình:
\(\frac - \frac{x} = 1.\)
Nhân cả hai vế của phương trình với x(x + 1) để khử mẫu, ta được:
55x – 40(x + 1) = x(x +1)
55x – 40x – 40 = x2 + x
15x – 40 = x2 + x
x2 – 14x + 40 = 0.
Giải phương trình này ta được hai nghiệm: x1 = 10; x2 = 4.
Cả hai nghiệm này đều thỏa mãn điều kiện.
Vậy có hai trường hợp đối với phòng họp lúc đầu:
⦁ Có 10 dãy ghế, mỗi dãy có 4 chỗ ngồi;
⦁ Có 4 dãy ghế, mỗi dãy có 10 chỗ ngồi.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |