Trên mặt phẳng tọa độ Oxy cho hình vuông ABCD với A(0; 2), B(–2; 0), C(0; –2), D(2; 0). Phép quay thuận chiều 90° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A’, B’, C’, D’. Tính chu vi tứ giác A’B’C’D’.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do ABCD là hình vuông nên hai đường chéo AC và BD vuông góc với nhau tại trung điểm của mỗi đường.
Ta có A(0; 2), B(–2; 0), C(0; –2), D(2; 0) nên B, D cùng nằm trên Ox và A, C cùng nằm trên Oy.
Ta cũng suy ra được OA = OB = OC = OD hay O là tâm của hình vuông ABCD.
Xét ∆OAB vuông tại O, theo định lí Pythagore, ta có:
AB2 = OA2 + OB2 = 22 + 22 = 8.
Suy ra \(AB = \sqrt 8 = 2\sqrt 2 .\) Như vậy, hình vuông ABCD có cạnh bằng \(2\sqrt 2 .\)
Ta có phép quay thuận chiều 90° tâm O giữ nguyên hình vuông ABCD do đó chu vi tứ giác A’B’C’D’ bằng chu vi hình vuông ABCD và bằng \(4 \cdot 2\sqrt 2 = 8\sqrt 2 \) (đơn vị chiều dài).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |