Cho hình lập phương ABCD.A’B’C’D’ có thể tích bằng 27a3. Hình trụ (T) có hai đáy là hai đường tròn (O), (O’) lần lượt ngoại tiếp hình vuông ABCD và hình vuông A’B’C’D’ (Hình 27). Tính diện tích toàn phần của hình trụ (T) theo a.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do hình lập phương ABCD.A’B’C’D’ có thể tích bằng 27a3 nên cạnh hình lập phương là \(\sqrt[3]{{27{a^3}}} = 3a.\)
Suy ra cạnh của hình vuông ABCD là 3a và bán kính của hình trụ bằng bán kính của đường tròn (O) ngoại tiếp hình vuông ABCD và bằng \(\frac{{3a\sqrt 2 }}{2}.\)
Vậy diện tích toàn phần của hình trụ (T) là:
\[2\pi \cdot \frac{{3a\sqrt 2 }}{2} \cdot 3a + 2\pi \cdot {\left( {\frac{{3a\sqrt 2 }}{2}} \right)^2} = 9\pi {a^2}\sqrt 2 + 9\pi {a^2} = 9\pi {a^2}\left( {\sqrt 2 + 1} \right).\]
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |