Một hình nón có bán kính đáy là 8 cm, đường sinh là 17 cm. Một hình cầu có thể tích bằng thể tích hình nón đó. Tính bán kính hình cầu (theo đơn vị centimét và làm tròn kết quả đến hàng phần mười).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có chiều cao của hình nón là: \(\sqrt {{{17}^2} - {8^2}} = \sqrt {289 - 64} = \sqrt {225} = 15\) (cm).
Gọi R là bán kính hình cầu.
Do thể tích hình cầu bằng thể tích hình nón nên ta có:
\(\frac{4}{3}\pi {R^3} = \frac{1}{3} \cdot \pi \cdot {8^2} \cdot 15\) hay R3 = 240.
Do đó \(R = \sqrt[3] \approx 6,2\) (cm).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |