Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp ∆BEF
Trong tứ giác BFEC có: BFC^=BEC^=90o (vì BE ^ AC và CF ^ AB)
mà hai góc này cùng chắn cạnh BC nên tứ giác BFEC nội tiếp đường tròn đường kính BC.
Hay ∆BEF nội tiếp đường tròn đường kính BC.
Vì M là trung điểm của cạnh huyền AH trong tam giác vuông AEH nên ME = MH Þ ∆MEH cân tại M
Þ MEH^=MHE^ hay MEB^=AHE^ mà AHE^ phụ HAE^ (∆AHE vuông tại E)
Þ MEB^ phụ HAE^ hay MEB^ phụ DAC^
Mặt khác ACD^ phụ DAC^ (∆ADC vuông tại D) hay ECB^ phụ DAC^
Vậy MEB^=ECB^ (cùng phụ DAC^)
Trong đường tròn ngoại tiếp ∆BEF có MEB^=ECB^ Þ ME là tiếp tuyến tại E của đường tròn này (vì có góc tạo bởi tia tiếp tuyến và góc nội tiếp cùng chắn cung EB)
Cách 2: Gọi O là trung điểm của BC. Chứng minh ME ^ EO
Trong tứ giác BFEC có: BFC^=BEC^=90o (vì BE ^ AC và CF ^ AB) mà hai góc này cùng chắn cạnh BC nên tứ giác BFEC nội tiếp đường tròn có tâm O là trung điểm BC.
Hay ∆BEF nội tiếp đường tròn tâm O.
Vì M là trung điểm của cạnh huyền AH trong tam giác vuông AEH nên ME = MH Þ ∆MEH cân tại M
Þ MEH^=MHE^ mà MHE^=BHD^ nên MEH^=BHD^ (1)
Tương tự:
Lại có O là trung điểm của cạnh huyền BC trong tam giác vuông BEC nên OE = OB
Þ ∆OBE cân tại O
Þ BEO^=EBO^ hay HEO^=HBD^ (2)
Từ (1) và (2) ta có: MEH^+HEO^=BHD^+HBD^
⇒MEO^=90o (vì ∆HBD vuông tại D)
Þ ME ^ OE mà E thuộc đường tròn (O) ngoại tiếp ∆BEF
Þ ME là tiếp tuyến của đường tròn ngoạiHôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |