Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O) có AB là một dây cung cố định không đi qua O. Từ một điểm M bất kì trên cung lớn AB (M không trùng A và B) kẻ dây cung MN vuông góc với AB tại H. Gọi MQ là đường cao của tam giác AMN (Q thuộc AN). a) Chứng minh tứ giác AMHQ nội tiếp đường tròn.

Cho đường tròn (O) có AB là một dây cung cố định không đi qua O. Từ một điểm M bất kì trên cung lớn AB (M không trùng A và B) kẻ dây cung MN vuông góc với AB tại H. Gọi MQ là đường cao của tam giác AMN (Q thuộc AN).

a) Chứng minh tứ giác AMHQ nội tiếp đường tròn.

1 Xem trả lời
Hỏi chi tiết
13
0
0
Nguyễn Thị Sen
12/09 21:06:05

Theo đề bài, ta có AH⊥MH⇒AHM^=90°AQ⊥MQ⇒AQM^=90°⇒AHM^=AQM^ (Cùng bằng 90o).

⇒ Tứ giác AMHQ nội tiếp (Bài toán quỹ tích cung chứa góc).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×