Cho các mệnh đề sau:
P: “Giá trị tuyệt đối của mọi số thực đều lớn hơn hoặc bằng chính nó”;
Q: “Có số tự nhiên sao cho bình phương của nó bằng 10”;
R: “Có số thực x sao cho x2 + 2x – 1 = 0”.
a) Xét tính đúng sai của mỗi mệnh đề trên.
b) Sử dụng kí hiệu ∀, ∃ để viết lại các mệnh đề đã cho.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
+) Xét mệnh đề P: “Giá trị tuyệt đối của mọi số thực đều lớn hơn hoặc bằng chính nó”:
Lấy số thực x bất kì, ta có:
Nếu x ≥ 0 thì |x| = x;
Nếu x < 0 thì |x| = - x. Do đó |x| > x.
Suy ra với mọi x ∈ℝ thì |x| ≥ x.
Vậy mệnh đề P đúng.
+) Xét mệnh đề Q: “Có số tự nhiên sao cho bình phương của nó bằng 10”:
Giả sử n là số tự nhiên thỏa mãn n2 = 10.
Xét n2 = 10 ⇔n=10n=−10
Tuy nhiên 10,−10∉ℕ.
Do đó không tồn tại số tự nhiên n thỏa mãn yêu cầu đề bài.
Vậy mệnh đề Q sai.
+) Xét mệnh đề R: “Có số thực x sao cho x2 + 2x – 1 = 0”.
Xét phương trình x2 + 2x – 1 = 0, có:
∆’ = 12 – 1.(-1) = 2 > 0
Khi đó phương trình có hai nghiệm x1=−1+2;x2=−1−2.
Hai nghiệm này đều là các số thực.
Do đó tồn tại các số thực x=−1+2;x=−1−2 thỏa mãn x2 + 2x – 1 = 0.
Vậy mệnh đề R đúng.
b) Bằng cách sử dụng kí hiệu, các mệnh đề được phát biểu như sau:
P: “∀x∈ℝ,x≥x”.
Q: “∃n∈ℕ,n2 = 10”
R: “∃x∈ℝ, x2 + 2x – 1 = 0”.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |