Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có AB = AC = 12 cm và \(\widehat {BAC} = 120^\circ .\) Xác định tâm và tính bán kính của đường tròn (O; R) ngoại tiếp tam giác ABC.

Cho tam giác ABC có AB = AC = 12 cm và \(\widehat {BAC} = 120^\circ .\) Xác định tâm và tính bán kính của đường tròn (O; R) ngoại tiếp tam giác ABC.

1 Xem trả lời
Hỏi chi tiết
9
0
0
Đặng Bảo Trâm
12/09 21:25:26

Vẽ đường trung trực của đoạn thẳng AB và AC cắt nhau tại điểm O.

Khi đó OA = OB và OA = OC.

Do đó R = OA = OB = OC, suy ra đường tròn (O; R) ngoại tiếp tam giác ABC.

Ta có AB = AC và OB = OC nên OA là đường trung trực của đoạn thẳng BC.

Vì tam giác ABC cân tại A nên đường trung trực OA của tam giác cũng là tia phân giác của góc BAC, suy ra \(\widehat {OAB} = \frac{1}{2}\widehat {BAC} = \frac{1}{2} \cdot 120^\circ  = 60^\circ .\)

Xét ∆OAB cân tại O (OA = OB) có \(\widehat {OAB} = 60^\circ \) nên tam giác OAB là tam giác đều.

Vậy R = OA = AB = 12 (cm).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×