1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Để chở 15 tấn thiết bị phục vụ Lễ kỷ niệm 70 năm chiến thắng Điện Biên Phủ, một đội vận chuyển dự định sử dụng các xe tải loại nhỏ. Do thay đổi kế hoạch, đội vận chuyển quyết định chỉ sử dụng các xe tải loại lớn. Vì vậy, số xe tải sử dụng giảm đi 2 xe so với dự định và mỗi xe tải loại lớn chở nhiều hơn mỗi xe tải loại nhỏ là 2 tấn. Hỏi đội vận chuyển sử dụng bao nhiêu xe tải loại lớn? (Biết mỗi xe tải cùng loại đều chở số tấn thiết bị bằng nhau).
2) Một bình đựng nước có dạng hình trụ với bán kính đáy là \(4\) cm và chiều cao là \(25{\rm{\;cm}}{\rm{.}}\) Tính diện tích xung quanh của bình đựng nước đó (lấy \(\pi \approx 3,14).\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1) Gọi số xe tải loại lớn mà đội vận chuyển sử dụng là \(x\) (xe) \(\left( {x \in \mathbb{N}*} \right).\)
Số xe tải loại nhỏ mà đội cần sử dụng theo kế hoạch là \(x + 2\) (xe).
Mỗi xe tải loại lớn vận chuyển được là \(\frac{x}\) (tấn).
Mỗi xe tải loại nhỏ theo kế hoạch vận chuyển được là \(\frac\) (tấn).
Theo bài, mỗi xe tải lớn chở nhiều hơn mỗi xe tải loại nhỏ 2 tấn nên ta có phương trình:
\(\frac{x} - \frac = 2\)
\(15\left( {x + 2} \right) - 15x = 2x\left( {x + 2} \right)\)
\(15x + 30 - 15x = 2{x^2} + 4x\)
\(2{x^2} + 4x - 30 = 0\)
\(x = 3\) hoặc \(x = - 5.\)
Ta thấy chỉ có giá trị \(x = 3\) thỏa mãn điều kiện.
Vậy xe tải loại lớn mà đội vận chuyển cần dùng là \(3\) xe.
2) Diện tích xung quanh của bình đựng nước là:
\({S_4} = 2\pi rh = 2\pi \cdot 4 \cdot 25 = 200\pi \approx 628{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Vậy diện tích xung quanh của bình đựng nước khoảng \(628{\rm{\;c}}{{\rm{m}}^2}.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |