Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi I, J lần lượt là trung điểm của các cạnh AD và BC và G là trọng tâm tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (IJG) và hình chóp là một hình bình hành.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD.
⇒ IJ // AB // CD.
G∈SAB∩IJGAB⊂SABIJ⊂IJGAB∥IJ
⇒ Trong (SAB) qua G kẻ MN // AB (M ∈ SA; N ∈ SB)
⇒ (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD.
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta-let ta có:
MNAB=SGSE=23 (với E là trung điểm của AB).
⇒ MN=23AB .
Lại có: IJ là đường trung bình của hình thang ABCD nên IJ=AB+CD2.
Để hình thang MNJI trở thành hình bình hành thì cần điều kiện MN = IJ.
⇒ 23AB=12AB+CD ⇔ 16AB=12CD ⇔ AB=3CD.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |