Cho đường thẳng d: y = -3x + 1 và parabol (P): y = mx2 (m ≠ 0). Tìm m để d và (P) cắt nhau tại hai điểm A và B phân biệt và cùng nằm về một phía đối với trục tung.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Phương trình hoành độ giao điểm mx2 = −3x + 1
⇔ mx2 + 3x – 1 = 0 (∗)
Ta có Δ = 9 + 4m; P=x1.x2=−1m với x1; x2 là hai nghiệm của phương trình (*).
Đường thẳng d cắt (P) tại hai điểm phân biệt nằm cùng một phía với trục tung
⇔ Phương trình (*) có hai nghiệm phân biệt cùng dấu
⇔ Δ>0P>0 ⇔ 4m+9>0−1m>0 ⇔ m>−94m<0 ⇔ −94 Vậy −94
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |