Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
Kẻ AH ⊥ BC tại H
Áp dụng hệ thức lượng trong tam giác vuông BAC có: \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\).
Do AD và AE lần lượt là 2 tia phân giác trong và ngoài tại đỉnh A ⇒ AD ⊥ AE
Áp dụng hệ thức lượng vào tam giác vuông AED có:
\(\frac{1}{{A{E^2}}} + \frac{1}{{A{D^2}}} = \frac{1}{{A{H^2}}}\)(AH là đường cao của ∆AED do AH ⊥ BC nên AH ⊥ ED)
\( \Rightarrow \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{E^2}}} + \frac{1}{{D{A^2}}}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |