Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
Đặt B = \(\widehat B\), C = \(\widehat C\).
Theo định lí tổng 3 góc trong tam giác ABC ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \).
Suy ra \(\widehat B + \widehat C = 180^\circ - \widehat A = 180^\circ - 75^\circ = 105^\circ \) hay B + C = 105°.
Theo đề bài ta có: \(\frac{B}{C} = \frac{4}{3} \Rightarrow \frac{B}{4} = \frac{C}{3} = \frac = \frac{{105^\circ }}{7} = 15^\circ \).
\(\frac{B}{4} = 15 \Rightarrow \widehat B = 60^\circ ;\frac{C}{3} = 15 \Rightarrow \widehat C = 45^\circ \).
Gọi AH là đường cao của tam giác ABC.
Ta có: \(\sin B = \frac \Rightarrow AH = \sin B.AB \Rightarrow AH = \sin 60^\circ .10 = 5\sqrt 3 cm\)
\(\cos B = \frac \Rightarrow HB = \cos B.AB \Rightarrow HB = \cos 60^\circ .10 = 5cm\)
\(\sin C = \frac \Rightarrow AC = \frac{{\sin C}} \Rightarrow AC = \frac{{5\sqrt 3 }}{{\sin 45^\circ }} = 5\sqrt 6 cm\)
\(\cos C = \frac \Rightarrow HC = \cos C.AC \Rightarrow HC = \cos 45^\circ .5\sqrt 6 = 5\sqrt 3 cm\)
Ta lại có: BC = HB + HC = \(5 + 5\sqrt 3 \approx 14cm\).
Diện tích tam giác ABC là \({S_{\Delta ABC}} = \frac{1}{2}AH.BC \approx \frac{1}{2}.5\sqrt 3 .14 = 35\sqrt 3 \) (cm2).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |