Chứng minh rằng với mọi giá trị của m:
a) Phương trình: mx2 – (3m + 2)x + 1 = 0 luôn có nghiệm.
b) Phương trình: \(({m^2} + 5){x^2} - \left( {\sqrt 3 m - 2} \right)x + 1 = 0\) luôn vô nghiệm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Ta có D = (3m + 2)2 – 4m = 9m2 + 12m + 4 – 4m = 9m2 + 8m + 4
Xét f(m) = 9m2 + 8m + 4 có
a = 9 > 0
D’ = 42 – 9 . 4 = 16 – 36 = – 20 < 0
Suy ra f(m) > 0 với mọi m
Do đó D > 0 với mọi m
Vậy phương trình mx2 – (3m + 2)x + 1 = 0 luôn có nghiệm.
b) Ta có
\(\Delta = {\left( {\sqrt 3 m - 2} \right)^2} - 4\left( {{m^2} + 5} \right).1 = 3{m^2} - 4\sqrt 3 m + 4 - 4{m^2} - 20 = - {m^2} - 4\sqrt 3 m + 16\)
\( = - \left( {{m^2} + 4\sqrt 3 m + 12} \right) - 4 = - {\left( {m - 2\sqrt 3 } \right)^2} - 4\)
Vì \({\left( {m - 2\sqrt 3 } \right)^2} \ge 0\) với mọi m
Nên \( - {\left( {m - 2\sqrt 3 } \right)^2} - 4 < 0\) với mọi m
Suy ra D < 0 với mọi m
Vậy phương trình \(({m^2} + 5){x^2} - \left( {\sqrt 3 m - 2} \right)x + 1 = 0\)luôn vô nghiệm.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |