Cho hàm số \[f\left( x \right) = \frac\] với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng ‒2.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đạo hàm \[f'\left( x \right) = \frac{{{m^2} - m + 1}}{{{{\left( {x + 1} \right)}^2}}} > 0\], ∀x ∈ [0; 1].
Suy ra hàm số f(x) đồng biến trên [0; 1] \[ \Rightarrow \mathop {\min }\limits_{\left[ {0;1} \right]} f\left( x \right) = f\left( 0 \right) = - {m^2} + m.\]
Theo bài ra:
\[ \Rightarrow \mathop {\min }\limits_{\left[ {0;1} \right]} f\left( x \right) = - 2 \Leftrightarrow - {m^2} + m = - 2 \Leftrightarrow {m^2} - m - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = - 1\\m = 2\end{array} \right.\]
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |