1) Giải hệ phương trình \[\left\{ \begin{array}{l}3x + y = 11\\2x + 3y = 12\end{array} \right.\].
2) Giải phương trình: \[{x^2} - x - 12 = 0\]
3) Cho phương trình: \[2{x^2} - 4mx + 2{m^2} - 1 = 0\] (1) với m là tham số.
a) Chứng minh với mọi giá trị của m, phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình có 2 nghiệm \[{x_1},\,\,{x_2}\] thỏa mãn \[2x_1^2 + 4m{x_2} + 2{m^2} - 9 < 0\].
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1) Hệ phương trình tương đương với:
\[\left\{ \begin{array}{l}y = 11 - 3x\\2x + 3\left( {11 - 3x} \right) = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 11 - 3x\\ - 7x = - 21\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 2\end{array} \right.\]
Vậy hệ phương trình có nghiệm là: \[\left( {x;\,\,y} \right) = \left( {3;\,\,2} \right)\]
2)
Cách 1: Phương trình tương đương với: \[\left( {{x^2} + 3x - 4x} \right) - 12 = 0\]
\[ \Leftrightarrow x\left( {x + 3} \right) - 4\left( {x + 3} \right) = 0 \Leftrightarrow \left( {x + 3} \right)\left( {x - 4} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x + 3 = 0\\x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = 4\end{array} \right.\]
Cách 2: Ta có \[\Delta = {\left( { - 1} \right)^2} - 4.1.\left( { - 12} \right) = 49 \Rightarrow \sqrt \Delta = 7\].
Phương trình có nghiệm là: \[\left[ \begin{array}{l}x = \frac{{ - \left( { - 1} \right) + 7}}\\x = \frac{{ - \left( { - 1} \right) - 7}}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 3\end{array} \right.\]
Vậy phương trình có nghiệm là: \[x = - 3;\,\,x = 4\]
3)
a) Ta có: \[\Delta ' = 4{m^2} - 2\left( {2{m^2} - 1} \right) = 2 > 0,\,\,\forall m\]
Vậy phương trình (1) luôn có 2 nghiệm phân biệt với mọi m.
b) Theo định lý Vi-ét, ta có \[{x_1} + {x_2} = 2m\]
Do đó \[2x_1^2 + 4m{x_2} + 2{m^2} - 9 = \left( {2x_1^2 - 4m{x_1} + 2{m^2} - 1} \right) + 4m\left( {{x_1} + {x_2}} \right) - 8\]
\[ = 8{m^2} - 8 = 8\left( {m - 1} \right)\left( {m + 1} \right)\] (do \[2x_1^2 - 4m{x_1} + 2{m^2} - 1 = 0\]).
Theo bài ra, ta có \[\left( {m - 1} \right)\left( {m + 1} \right) < 0 \Leftrightarrow - 1 < m < 1\].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |