\(P\) và \(Q\) là hai điểm trên mặt nước cách nhau một khoảng \(20{\rm{\;cm}}\). Tại một điểm \({\rm{O}}\) trên đường thẳng \({\rm{PQ}}\) và nằm ngoài đoạn \({\rm{PQ}}\), người ta đặt nguồn dao động điều hoà theo phương vuông góc với mặt nước với phương trình \({\rm{u}} = 5{\rm{cos}}\omega {\rm{t}}\left( {{\rm{cm}}} \right)\), tạo ra sóng trên mặt nước với bước sóng \(\lambda = 15{\rm{\;cm}}\). Khoảng cách xa nhất và gần nhất giữa hai phần tử môi trường tại \({\rm{P}}\) và \(Q\) khi có sóng truyền qua là bao nhiêu?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đối với trường hợp sóng ngang, khoảng cách giữa hai điểm P, Q khi dao động được mô tả như Hình 9.4G.
Gọi O1, O2 lần lượt là vị trí cân bằng của P và Q; u1, u2 lần lượt là li độ dao động của các phần tử tại P và Q;\({\rm{\Delta }}u = {u_1} - {u_2}\).
Khoảng cách giữa P và Q trong quá trình dao động là:
\(l = \sqrt {{{\left( {{{\rm{O}}_1}{{\rm{O}}_2}} \right)}^2} + {{({\rm{\Delta u}})}^2}} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{l_{{\rm{min}}}} = \sqrt {{{\left( {{{\rm{O}}_1}{{\rm{O}}_2}} \right)}^2} + {{(0)}^2}} = {{\rm{O}}_1}{{\rm{O}}_2}}\\{{l_{{\rm{max}}}} = \sqrt {{{\left( {{{\rm{O}}_1}{{\rm{O}}_2}} \right)}^2} + {{\left( {{\rm{\Delta }}{{\rm{u}}_{{\rm{max}}}}} \right)}^2}} }\end{array}} \right.\)
Vậy khoảng cách gần nhất giữa P và Q là: \({l_{{\rm{min}}}} = {O_1}{O_2} = 20{\rm{\;cm}}\).
Khoảng cách xa nhất giữa P và Q là: \({l_{{\rm{max}}}} = \sqrt {{{\left( {{{\rm{O}}_1}{{\rm{O}}_2}} \right)}^2} + {{\left( {{\rm{\Delta }}{{\rm{u}}_{{\rm{max}}}}} \right)}^2}} \).
Giả sử sóng truyền qua P rồi mới đến Q thì dao động tại P sớm pha hơn Q là: \({\rm{\Delta }}\varphi = \frac{{2\pi \left( {PQ} \right)}}{\lambda } = \frac{{8\pi }}{3}\)
Chọn mốc thời gian để phương trình dao động của phần tử tại P là: \({u_1} = 5{\rm{cos}}\omega t\left( {{\rm{cm}}} \right)\)
thì phương trình dao động của phần tử tại Q là: \({u_2} = 5{\rm{cos}}\left( {\omega t - \frac{{8\pi }}{3}} \right)\left( {{\rm{cm}}} \right)\).
\({\rm{\Delta u}} = {{\rm{u}}_1} - {{\rm{u}}_2} = 5{\rm{cos}}\left( {\omega {\rm{t}} - \frac{{8\pi }}{3}} \right) - 5{\rm{cos}}\omega {\rm{t}} = 5\sqrt 3 {\rm{cos}}\left( {\omega {\rm{t}} - \frac{{5\pi }}{6}} \right)\left( {{\rm{cm}}} \right)\)
\( \Rightarrow {\rm{\Delta }}{{\rm{u}}_{{\rm{max}}}} = 5\sqrt 3 {\rm{\;cm}}\).
\({l_{{\rm{max}}}} = \sqrt {{{(20)}^2} + {{(5\sqrt 3 )}^2}} = 5\sqrt {19} {\rm{\;cm}}.\)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |