Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
Kẻ AH vuông góc với SD tại H nên AH ⊥ SD (1)
Ta có: \(\left\{ \begin{array}{l}SA \bot CD\\AD \bot CD\end{array} \right. \Rightarrow CD \bot (SAD) \Rightarrow CD \bot AH\) (2)
Từ (1) và (2) suy ra: AH ⊥ (SCD) ⇒ d(A; (SCD) = AH.
Mà \(d(A;(SCD)) = 2d(O;(SCD)) = \frac{{a\sqrt 3 }}{2} \Rightarrow AH = \frac{{a\sqrt 3 }}{2}\)
Tam giác SAD vuông tại A, có \(\frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} = \frac{1}{{A{H^2}}} \Rightarrow SA = a\)
Thể tích khối chóp S. ABCD là:
\({V_{S.ABCD}} = \frac{1}{3}\,.\,SA\,.\,{S_{ABCD}} = \frac{1}{3}a\,.\,{a^2}\sqrt 3 = \frac{{{a^3}\sqrt 3 }}{3}\) (đvtt).
Vậy thể tích khối chóp S. ABCD bằng \(\frac{{{a^3}\sqrt 3 }}{3}\) (đvtt).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |