Bài tập  /  Bài đang cần trả lời

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

1 trả lời
Hỏi chi tiết
18
0
0
Bạch Tuyết
13/09 13:37:28

• Với k = 1 Þ \[\frac{{k2\pi }}{3} = \frac{{2\pi }}{3}\] ta có điểm M

• Với k = 2 Þ \[\frac{{k2\pi }}{3} = \frac{{4\pi }}{3}\] ta có điểm N

• Với k = 3 Þ\[\frac{{k2\pi }}{3} = 2\pi \] ta có điểm A

• Với k = 4 Þ \[\frac{{k2\pi }}{3} = \frac{{8\pi }}{3}\] ta có điểm M

Tương tự với các giá trị khác của k ta cũng chỉ thu được 3 điểm M, N, A trên đường tròn lượng giác và ba điểm đó tạo thành một tam giác đều.

Vậy cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư