Giải phương trình: 4sin3 x + 3cos3 x – 3sin x – sin2 xcos x = 0.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
• Trường hợp 1: cos x = 0 \[ \Leftrightarrow x = \frac{\pi }{2} + k\pi \,\,\,(k \in \mathbb{Z})\].
Khi đó sin2 x = 1 ⇔ sin x = ±1
Thay sin x = 1vào phương trình ta có: 4.1− 3.0 − 3.1 − 1.0 = 0 ⇔ 1 = 0 (vô lý)
\[ \Rightarrow x = \frac{\pi }{2} + k\pi \,\,\,(k \in \mathbb{Z})\]không là nghiệm của phương trình.
• Trường hợp 2: cos x ≠ 0 \[ \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \,\,\,\,(k \in \mathbb{Z})\]
Chia cả 2 vế của phương trình cho cos3 x ta được:
\[4\frac{{si{n^3}x}}{{co{s^3}x}} + 3 - 3\frac\frac{1}{{co{s^{_2}}x}} - \frac{{si{n^2}x}}{{co{s^2}x}} = 0 \Leftrightarrow 4ta{n^3}x + 3 - 3tanx(1 + ta{n^2}x) - ta{n^2}x = 0\]
⇔ 4tan3 x + 3 − 3tan x − 3tan3 x − tan2 x = 0 ⇔ tan3 x − tan2 x − 3tan x + 3 = 0
⇔ tan2 x(tan x − 1) − 3(tan x − 1) = 0 ⇔ (tan x − 1)(tan2 x − 3) = 0
\[ \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x = \sqrt 3 \\\tan x = - \sqrt 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k\pi \\x = \frac{\pi }{3} + k\pi \\x = - \frac{\pi }{3} + k\pi \end{array} \right.\]
Vậy \[x = \frac{\pi }{4} + k\pi \]hoặc \[x = \pm \frac{\pi }{3} + k\pi \].
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |