Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC) góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60°. Tính khoảng cách giữa hai đường thẳng AC và SB.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
SA ⊥ (ABC) nên AB là hình chiếu của SB lên (ABC)
\[ \Rightarrow \widehat {(SB,(ABC))} = \widehat {(SB,AB)} = \widehat {SBA} = 60^\circ \]
\[ \Rightarrow SA = AB.\tan 60^\circ = a\sqrt 3 \]
Dựng d qua B và d // AC
Dựng AK ⊥ d tại K
Dựng AH ⊥ SK tại H
Ta có: BK ⊥ AK và BK ⊥ SA nên BK ⊥ (SAK)
Þ BK ⊥ AH
Mà SK ⊥ AH
Þ AH ⊥ (SBK)
Lại có: BK // AC; SK Ì (SBK); AC Ë (SBK)
Suy ra AC // (SBK)
Þ d(AC, SB) = d(A, (SBK)) = AH
Gọi M là trung điểm của AC suy ra BM ⊥ AC
Mà BK ⊥ AK và BK // AC nên AK ⊥ AC
Do đó AKBM là hình bình hành
\[ \Rightarrow AK = BM = \frac{{a\sqrt 3 }}{2}\]
Xét tam giác SAK vuông tại A ta có:
\[\frac{1}{{A{H^2}}} = \frac{1}{{A{K^2}}} + \frac{1}{{S{A^2}}} = \frac{5}{{3{a^2}}}\]
\[AH = \frac{{a\sqrt {15} }}{5}\]
Vậy \[d(AC,SB) = \frac{{a\sqrt {15} }}{5}\].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |