Tìm các số nguyên tố p và q sao cho 7p + q và pq + 11 cũng là các số nguyên tố.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì p, q là số nguyên tố mà pq+11 cũng là số nguyên tố
Þ pq chẵn
Giả sử p = 2
Þ 7p + q = 14 + q
Mà 7p + q là số nguyên tố nên q lẻ
Þ q = 3; 3k + 1; 3k + 2
• Nếu q = 3 thì 14 + 3 =17 là số nguyên tố
2.3 + 11 = 17 là số nguyên tố
Þ Thỏa mãn
• Nếu q = 3k + 1 thì 14 + 3k + 1 = 15 + 3k = 3(5 + k) chia hết cho 3.
Þ Không thỏa mãn
• Nếu q = 3k + 2 thì 2(3k + 2) + 11 = 2.3k + 15 = 3(2k+5) chia hết cho 3.
Þ Không thỏa mãn
Þ p = 2; q = 3
Giả sử q = 2
Þ p lẻ vì 7p+2 là số nguyên tố lớn hơn 3
Þ p = 3; 3k + 1; 3k + 2
• Nếu p = 3 thì 7.3 + 2 = 23 là số nguyên tố
2.3 +11 = 17 là số nguyên tố
Þ Thỏa mãn
• Nếu p = 3k + 1 thì 7(3 + 1) + 2 = 7.3k + 9 = 3(7k + 3) chia hết cho 3
Þ Không thỏa mãn
• Nếu p = 3k + 2 thì 2(3k + 2) + 11 = 2.3k + 15 = 3(2k + 5) chia hết cho 3
Þ Không thỏa mãn
Do đó p = 3; q = 2.
Vậy p = 3; q = 2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |