Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V. Tính V.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: VACMNPQ = VEAMNC – VEACPQ
\[{V_{EACPQ}} = \frac{1}{3}d(E,(ACPQ)).{S_{ACPQ}} = \frac{1}{3}d(E,\,(ACD)).\left( {{S_{ACD}} - {S_{DPQ}}} \right)\]
\[{V_{EACPQ}} = \frac{1}{3}d(B,(ACD))\,.\,\left( {{S_{ACD}} - \frac{1}{9}{S_{ACD}}} \right) = \frac{8}{9}{V_{ABCD}}\]
(Vì P, Q là trọng tâm của ΔBCE và ΔABE)
\[{V_{ACMNPQ}} = \frac{V_{ABCD}} = \frac \cdot \frac{{{a^3}\sqrt 2 }} = \frac{{11\sqrt 2 {a^3}}}\]
Vậy \[{V_{ACMNPQ}} = \frac{{11\sqrt 2 {a^3}}}\].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |