Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho OH = 1 cm. Kẻ dây cung DC vuông góc với AB tại H.
a) Chứng minh △ABC vuông và tính độ dài AC.
b) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh tam giác CBE cân và \(\frac = \frac\).
c) Gọi I là trung điểm của EA; đoạn IB cắt (O) tại Q. Chứng minh CI là tiếp tuyến của (O) và từ đó suy ra \(\widehat {ICQ} = \widehat {CBI}\).
d) Tiếp tuyến tại B của (O) cắt IC tại F. Chứng minh ba đường thẳng IB, HC, AF đồng quy.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) ΔABC nội tiếp đường tròn đường kính AB
Suy ra: ΔABC vuông tại C.
⇒ AC2 = AH.AB = (R – OH) . 2R = (4 – 1) . 2 . 4 = 24
⇔ AC = \(2\sqrt 6 \)(cm)
b) Xét tam giác vuông OHC và tam giác vuông OHD có:
Chung OH
OC = OD
Suy ra: ∆OHC = ∆OHD (cạnh huyền – cạnh góc vuông)
⇒ HC = HD
⇒ BH là là trung tuyến của ΔBCD mà BH cũng là đường cao
⇒ ΔBCD cân tại B
Ta có: AC ⊥ CB ⇒ ΔCAE vuông tại C
CD ⊥ AB ⇒ ΔHBC vuông tại H
Mà \(\widehat {CBH} = \widehat {EAC}\)(cùng phụ với \(\widehat {CAB}\))
Xét ∆CAE và ∆HBC có:
\(\widehat {ECA} = \widehat {CHB}\)= 90°
\(\widehat {EAC} = \widehat {CBH}\)(cùng bằng \(\frac{1}{2}\)cung AC)
Suy ra: ∆CAE ~ ∆HBC (g.g)
Suy ra: \(\frac = \frac\)
Mà ΔBCD cân tại B, BH là trung tuyến
⇒ BC = BD và HC = DH
Vậy \(\frac = \frac\).
c) ΔAOC cân tại O ⇒ \(\widehat {OAC} = \widehat {OCA}\)
mà \(\widehat {OAC} = \widehat {CEI}\) (cùng phụ với \(\widehat {EAC}\))
⇒ \(\widehat {OCA} = \widehat {CEI}\)
ΔACE vuông tại C có CI là trung tuyến ứng với cạnh huyền
⇒ CI = IE ⇒ ΔCIE cân tại I
⇒ \(\widehat {ICE} = \widehat {CEI}\)
⇒ \(\widehat {ICE} = \widehat {OCA}\)
Lại có \(\widehat {ICE} + \widehat {ICA}\)= 90°
⇒ \(\widehat {ICA} + \widehat {OCA}\)= 90°
⇒ \(\widehat {OCI}\)= 90°
⇒ CI là tiếp tuyến của (O)
⇒ \[\widehat {ICQ} = \widehat {CBI}\]= 90° (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)
d, Gọi G = IB ∩ HC
Ta có: CG // BF (cùng ⊥ AB)
\(\frac = \frac\)
Suy ra: \(\frac = \frac\)
AI // BF (cùng ⊥ AB)
⇒ \[\widehat {AIG} = \widehat {GBF}\]
Xét tam giác IAG và tam giác GBF có:
\[\widehat {AIG} = \widehat {GBF}\]
\(\frac = \frac\)
⇒ ΔAIG ᔕ ΔFBG (c.g.c)
⇒\[\widehat {IGA} = \widehat {BGF}\]
⇒ A, G, F thẳng hàng
⇒ 3 đường thẳng IB, HC, AF đồng quy tại G.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |