Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có AD là phân giác của góc BACD∈BC . Từ kẻ các đường thẳng song song với AB và AC, chúng cắt AC,AB tại E và F. Gọi I là điểm đối xứng của D qua F, tia IA cắt tia DE tại K. Gọi O là giao điểm của AD và EF. Chứng minh G đối xứng với K qua O.

Cho tam giác ABC có AD là phân giác của góc BACD∈BC . Từ kẻ các đường thẳng song song với AB và AC, chúng cắt AC,AB tại E và F.

Gọi I là điểm đối xứng của D qua F, tia IA cắt tia DE tại K. Gọi O là giao điểm của AD và EF. Chứng minh G đối xứng với K qua O.

1 Xem trả lời
Hỏi chi tiết
10
0
0
Nguyễn Thị Nhài
13/09 16:42:47

Phương pháp:

Dùng tính chất của hình bình hành, hình thoi để giải quyết bài toán.

Cách giải:

Vì FA=FG   gt,   FI=FD   gt  nên IADG là hình bình hành (dhnb)

⇒IA//DG (tính chất) hay AK//DG .

Lại có DK//GA  (do DE//AB )

⇒AKDG là hình bình hành (dhnb)

Mà O là trung điểm của AD nên O cũng là trung điểm của GK. (hai đường chéo hình hình hành cắt nhau tại trung điểm của mỗi đường).

Vậy K đối xứng với G qua O. (đpcm).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×