Cho đồ thị của ba hàm số y = ax, y = bx, y = cx được vẽ trên cùng một hệ trục toạ độ (như hình vẽ). Chứng minh rằng b > a > c.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Dựa vào đồ thị hàm số ta có:
Do y = ax và y = bx là hai hàm đồng biến nên a, b > 1
Do y = cx nghịch biến nên c < 1.
Suy ra c < a, b
Mặt khác: Lấy x = m, khi đó tồn tại y1, y2 > 0 sao cho \[\left\{ {\begin{array}{*{20}{c}}{{a^m} = {y_1}}\\{{b^m} = {y_2}}\end{array}} \right.\]
Dựa vào đồ thị hàm số, dễ thấy y2 > y1 hay bm > am
Mà y =ax và y = bx là hai hàm đồng biến
Suy ra b > a
Vậy b > a > c
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |