Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HM vuông góc với AB, HN vuông góc với AC. Chứng minh rằng tam giác AMN đồng dạng với tam giác ABC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
∆ABH vuông tại H có HM là đường cao: AH2 = AM.AB (hệ thức lượng trong tam giác vuông) (1)
∆ACH vuông tại H có HN là đường cao: AH2 = AN.AC (hệ thức lượng trong tam giác vuông) (2)
Từ (1), (2), suy ra AM.AB = AN.AC.
Xét ∆AMN và ∆ABC, có:
BAC^=90°;
AMAC=ANAB (do AM.AB = AN.AC).
Vậy ΔAMN∽ΔABC (c.g.c).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |