Cho Parabol (P): y = x2 và đường thẳng (d): y = mx – m + 1
a) Tìm toạ độ giao điểm của (P) và (d) khi m = 4
b) Tìm m để (d) cắt (P) tạo hai điểm phân biệt có hoành độ thoả mãn x1 = 9x2
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét phương trình hoành độ giao điểm:
x2 = mx – m + 1
Û x2 – mx + m – 1 = 0 (1)
Thay m = 4 vào phương trình (1) ta có:
x2 – 4x + 3 = 0
Û x2 – x – 3x + 3 = 0
Û x(x – 1) – 3(x – 1) = 0
Û (x – 1)(x – 3) = 0
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x - 1 = 0}\\{x - 3 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 3}\end{array}} \right.\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{y = 1}\\{y = 9}\end{array}} \right.\]
Vậy toạ độ giao điểm của (P) và (d) khi m = 4 là A(1; 1) và B(3; 9).
b) Phương trình: x2 – mx + m – 1 = 0 (1)
Û x2 – 1 – mx + m = 0
Û (x – 1)(x + 1) – m(x – 1) = 0
Û (x – 1)(x + 1 – m) = 0
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x - 1 = 0}\\{x + 1 - m = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = m - 1}\end{array}} \right.\]
Để (d) cắt (P) tạo hai điểm phân biệt thì phương trình (1) phải có 2 nghiệm phân biệt.
Do đó, \[m - 1 \ne 1 \Leftrightarrow m \ne 2\]
Ta có: x1 = 9x2
Trường hợp 1: 1 = 9(m – 1)
Û 1 = 9m – 9
Û 9m = 10
Û \[m = \frac{9}\] (tmđk)
Trường hợp 2: m – 1 = 9. 1
Û m – 1 = 9
Û m = 10 (tmđk)
Vậy tập hợp các giá trị m thoả mãn đề bài là \[S = \left\{ {\frac{9};10} \right\}\].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |