Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Gọi M và N lần lượt là trung điểm của OB và CD. Chứng minh rằng bốn điểm A, M, N, D cùng thuộc một đường tròn.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Kẻ NH ^ OD
ABCD là hình vuông nên AC ^ BD và AC = BD
Þ NH // OC
Xét ΔOCD có:
NC = ND (vì N là trung điểm của CD)
NH // OC
Þ NH là đường trung bình của ΔOCD
Þ H là trung điểm của OD và \[NH = \frac{1}{2}OC\]
Þ NH = OM
Ta có:
\[HM = OM + OH = \frac{1}{2}OB + \frac{1}{2}OD = \frac{1}{2}BD\]
Þ HM = OA
Xét ΔOMA và ΔHNM có:
\[\widehat H = \widehat O = 90^\circ \]
NH = OM
HM = OA
ΔHNM = ΔOMA (c.g.c)
\[ \Rightarrow \widehat {HMN} = \widehat {OAM}\]
Do đó:
\[\widehat {AMN} = \widehat {AMO} + \widehat {HMN} = \widehat {AMO} + \widehat {OAM} = 90^\circ \]
Gọi I là trung điểm của AN
Xét ΔAMN vuông tại M có I là trung điểm của AN
\[ \Rightarrow IM = IN = IA = \frac{1}{2}AN\]
Xét ΔADN vuông tại D có I là trung điểm của AN
\[ \Rightarrow ID = IN = IA = \frac{1}{2}AN\]
Do đó: IA = IM = IN = ID hay 4 điểm A, M, N, D cùng thuộc đường tròn tâm I, bán kính IA.
Vậy bốn điểm A, M, N, D cùng thuộc một đường tròn.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |