Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy lớn \(BC = 2{\rm{a}}\) và \(A{\rm{D}} = AB = a\). Mặt bên SAD là tam giác đều. Gọi M là điểm bất kì thuộc cạnh AB. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với SA, BC, cắt CD, SC, SB lần lượt tại N, P, Q.
a) Chứng minh: \(PN//\left( {SA{\rm{D}}} \right)\).
b) Gọi E là giao điểm của MQ và NP. Chứng minh rằng E luôn nằm trên một đường thẳng cố định.
c) Giả sử \(AM = x\,\left( {0 < x < a} \right)\). Tính diện tích thiết diện tạo bởi mặt phẳng \(\left( \alpha \right)\) với hình chóp S.ABCD theo a và x. Tìm vị trí của M để thiết diện đạt giá trị lớn nhất?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Phương pháp:
+) \(\left\{ \begin{array}{l}\left( P \right) \cap \left( Q \right) = d\\a \subset \left( P \right)\\a//\left( Q \right)\end{array} \right. \Rightarrow a//d\)
+) \(\left\{ \begin{array}{l}a,b \subset \left( P \right)\\a',\,b' \subset \left( Q \right)\\a//a',\,b//b'\\a \cap b = \left\{ I \right\}\end{array} \right. \Rightarrow \left( P \right)//\left( Q \right)\)
+) \(\left\{ \begin{array}{l}\left( P \right)//\left( Q \right)\\a \subset \left( P \right)\end{array} \right. \Rightarrow a//\left( Q \right)\)
Cách giải:
a) Ta có: \(\left\{ \begin{array}{l}\left( {MNPQ} \right) \cap \left( {SAB} \right) = MQ\\SA \subset \left( {SA{\rm{D}}} \right)\\SA//\left( {MNPQ} \right)\end{array} \right. \Rightarrow MQ//SA\) (1)
Do \(\left\{ \begin{array}{l}\left( {MNPQ} \right) \cap \left( {SBC} \right) = PQ\\BC \subset \left( {SBC} \right)\\BC//\left( {MNPQ} \right)\end{array} \right. \Rightarrow BC//PQ\). Mà \(A{\rm{D//BC}} \Rightarrow {\rm{PQ//AD}}\) (2)
Từ (1), (2) suy ra: \(\left( {MNPQ} \right)//\left( {SA{\rm{D}}} \right) \Rightarrow NP//\left( {SA{\rm{D}}} \right)\) (do \(NP \subset \left( {MNPQ} \right)\))
b) Ta có: \[E = MQ \cap NP\].
Mà \[MQ \subset \left( {SAB} \right),NP \subset \left( {SC{\rm{D}}} \right) \Rightarrow E \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right)\]
\[ \Rightarrow \] E luôn di động trên một đường thẳng cố định, chính là giao tuyến của (SAB) và (SCD).
c) Thiết diện của hình chóp cắt bởi \[\left( \alpha \right)\] là hình thang MNPQ (do \[MN//PQ\left( {//BC} \right)\])
Ta có: \[\left\{ \begin{array}{l}MQ//SA\\MN//A{\rm{D}}\end{array} \right. \Rightarrow MQN = SA{\rm{D}} = 60^\circ \] (do tam giác SAD đều)
\[\left\{ \begin{array}{l}NP//S{\rm{D}}\\MN//A{\rm{D}}\end{array} \right. \Rightarrow QPN = S{\rm{D}}A = 60^\circ \] (do tam giác SAD đều)
\[ \Rightarrow MQN = QPN \Rightarrow \]MNPQ là hình thang cân.
+) \[MQ//SA \Rightarrow \frac = \frac = \frac = \frac{x}{a} \Rightarrow \left\{ \begin{array}{l}MQ = \frac{x}{a}.SA = \frac{x}{a}.a = x\\\frac = \frac{x}{a}\end{array} \right.\]
+) \[PQ//BC \Rightarrow \frac = \frac = \frac{x}{a} \Rightarrow PQ = \frac{x}{a}.BC = \frac{x}{a}.2{\rm{a}} = 2{\rm{x}}\]
+) Gọi I là trung điểm của BC, J là giao điểm của ID và MN
Khi đó, ABID là hình thoi có các cạnh đều bằng a \[ \Rightarrow {\rm{MJ = a}}\] (do \[MJ//BI//A{\rm{D}}\])
\[JN//IC \Rightarrow \frac = \frac{{J{\rm{D}}}}{{I{\rm{D}}}} = \frac = \frac{x}{a} \Rightarrow JN = \frac{x}{a}.IC = \frac{x}{a}.a = x \Rightarrow MN = a + x\]
Gọi H, K lần lượt là hình chiếu của Q, P lên MN.
Do MNPQ là hình thang cân nên
\[MH = KN = \frac{2} = \frac}}{2} = \frac{2}\]
\[\Delta MQH\] vuông tại H \[ \Rightarrow QH = MH.\tan 60^\circ = \frac{2}.\sqrt 3 \]
Diện tích hình thang MNPQ là:
\[{S_{MNPQ}} = \frac{1}{2}\left( {PQ + MN} \right).QH = \frac{1}{2}.\left( {2{\rm{x}} + x + a} \right).\frac{{\sqrt 3 }}{2}\left( {a - x} \right)\]
\[ = \frac{{\sqrt 3 }}\left( {3{\rm{x}} + a} \right)\left( {3{\rm{a}} - 3{\rm{x}}} \right)\]
Áp dụng BĐT Cô si, ta có: \[\left( {3{\rm{x}} + a} \right)\left( {3{\rm{a}} - 3{\rm{x}}} \right) \le {\left( {\frac{{3{\rm{x}} + a + 3{\rm{a}} - 3{\rm{x}}}}{2}} \right)^2} = 4{{\rm{a}}^2}\]
\[ \Rightarrow \frac{{\sqrt 3 }}\left( {3{\rm{x}} + a} \right)\left( {3{\rm{a}} - 3{\rm{x}}} \right) \le \frac{{\sqrt 3 }}.4{{\rm{a}}^2} = \frac{{{a^2}\sqrt 3 }}{3} \Rightarrow {S_{MNPQ}} \le \frac{{{a^2}\sqrt 3 }}{3}\]
Dấu “=” xảy ra khi và chỉ khi \[3{\rm{x}} + a = 3{\rm{a}} - 3{\rm{x}} \Leftrightarrow x = \frac{2}{3}a\]
Vậy, diện tích thiết diện MNPQ đạt giá trị lớn nhất \[\frac{{{a^2}\sqrt 3 }}{3}\] khi và chỉ khi M nằm trên cạnh AB sao cho \[AM = \frac{2}{3}a\].
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |