b) Chứng minh tam giác HDE là tam giác cân.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
b) Vì ∆ADB = ∆AEC (chứng minh câu a).
Suy ra AD = AE (hai cạnh tương ứng) và ABD^=ACE^ (hai góc tương ứng).
Ta có AB = AE + EB, AC = AD + DC.
Mà AB = AC, AE = AD.
Suy ra BE = CD.
Xét DEHB và DDHC có:
HEB^=HDC^=90°,
BE = CD (chứng minh trên),
EBH^=DCH^ (do ABD^=ACE^ )
Suy ra ∆EHB = ∆DHC (cạnh góc vuông – góc nhọn kề).
Do đó HE = HD, BH = CH (các cặp cạnh tương ứng).
Tam giác HDE có HE = HD nên tam giác HDE cân tại H.
Vậy tam giác HDE là tam giác cân tại H.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |