LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.

c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.

1 trả lời
Hỏi chi tiết
9
0
0
Bạch Tuyết
13/09 17:54:24

c) Xét ∆AHF và DAHC có:

AH là cạnh chung,

FAH^=CAH^ (do AD là tia phân giác của góc BAC),

AF = AC (chứng minh câu b).

Do đó ∆AHF = DAHC (c.g.c).

Suy ra HF = HC (hai cạnh tương ứng).

Khi đó H là trung điểm của FC nên DH là đường trung tuyến xuất phát từ đỉnh D của tam giác DFC.

Xét tam giác DFC có CG và DH là hai đường trung tuyến, CG và DH cắt nhau tại I

Suy ra I là trọng tâm của tam giác DFC.

Do đó IH =12 ID (tính chất trọng tâm của tam giác)

Hay DI = 2IH.

Vậy DI = 2IH.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư