Cho tam giác ABC cân tại A. Gọi G là trọng tâm của tam giác và gọi I là giao điểm của các đường phân giác của tam giác. Chứng minh ba điểm A, I, G thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vẽ phân giác AD của tam giác ABC.
Xét DABD và DACD có:
AB = AC (do DABC cân tại A),
BAD^=CAD^ (do AD là phân giác của BAC^),
AD là cạnh chung.
Do đó DABD = DACD (c.g.c)
Suy ra DB = DC.
Khi đó AD vừa là đường phân giác vừa là đường trung tuyến của tam giác ABC.
Mà G là trọng tâm của tam giác và I là giao điểm của các đường phân giác của tam giác ABC.
Suy ra hai điểm I và G đều thuộc AD.
Khi đó ba điểm A, I, G thẳng hàng.
Vậy ba điểm A, I, G thẳng hàng.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |