Cho tam giác ABC vuông tại A (AB < AC). Gọi M, N, E lần lượt là trung điểm của AB, AC, BC. Chứng minh rằng tứ giác ANEB là hình thang vuông.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét ΔABC vuông tại A có AE là đường trung tuyến ứng với cạnh huyền BC
Suy ra AE=EB=EC=12BC
Vì EA = EC nên E nằm trên đường trung trực của AC.
Vì N là trung điểm của AC nên N nằm trên đường trung trực của AC.
Suy ra EN là đường trung trực của đoạn thẳng AC nên EN ⊥ AC.
Ta có: BA ⊥ AC và EN ⊥ AC nên BA // EN.
Tứ giác ANEB có BA // EN nên ANEB là hình thang
Lại có BAN^=90° nên hình thang ANEB là hình thang vuông
Vậy ANEB là hình thang vuông.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |