Bài tập  /  Bài đang cần trả lời

Cho nửa đường tròn tâm O, đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D. a) Chứng minh tam giác COD vuông tại O. b) Chứng minh AC.BD = R2. c) Kẻ MH vuông góc với AB (H ∈ AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.

Cho nửa đường tròn tâm O, đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.

a) Chứng minh tam giác COD vuông tại O.

b) Chứng minh AC.BD = R2.

c) Kẻ MH vuông góc với AB (H ∈ AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.

1 trả lời
Hỏi chi tiết
11
0
0
Tôi yêu Việt Nam
13/09 22:47:39

a) Đường tròn (O) có hai tiếp tuyến AC, MC cắt nhau tại C.

Suy ra OC là tia phân giác của \(\widehat {AOM}\) (tính chất hai tiếp tuyến cắt nhau).

Do đó \(2\widehat {AOC} = 2\widehat {COM} = \widehat {AOM}\).

Chứng minh tương tự, ta được \(2\widehat {MOD} = 2\widehat {DOB} = \widehat {MOB}\).

Ta có \(\widehat {AOM} + \widehat {MOB} = 180^\circ \) (kề bù).

Suy ra \(2\widehat {COM} + 2\widehat {MOD} = 180^\circ \).

Khi đó \(2\left( {\widehat {COM} + \widehat {MOD}} \right) = 180^\circ \).

Vì vậy \(\widehat {COD} = 180^\circ :2 = 90^\circ \).

Vậy tam giác COD vuông tại O.

b) Đường tròn (O) có hai tiếp tuyến AC, MC cắt nhau tại C.

Suy ra AC = MC (tính chất hai tiếp tuyến cắt nhau).

Chứng minh tương tự, ta được DM = BD.

Ta có CD là tiếp tuyến của (O) có M là tiếp điểm. Suy ra OM ⊥ CD.

Tam giác COD vuông tại O có OM là đường cao: OM2 = CM.DM.

⇔ R2 = AC.BD.

Vậy ta có điều phải chứng minh.

c) Gọi I là giao điểm của MH và BC, K là giao điểm của MB và AC.

Đường tròn (O) có hai tiếp tuyến DM, DB cắt nhau tại D.

Suy ra DM = DB.

Lại có OM = OB = R.

Suy ra OD là đường trung trực của đoạn MB.

Do đó OD ⊥ MB.

Mà OD ⊥ OC (tam giác COD vuông tại O).

Suy ra MB // OC.

Mà O là trung điểm AB (đường tròn (O) có AB là đường kính).

Do đó OC là đường trung bình của tam giác ABK.

Vì vậy C là trung điểm AK.

Ta có MH ⊥ AB (giả thiết) và AK ⊥ AB (do AK là tiếp tuyến của (O) tại A).

Suy ra MH // AK.

Áp dụng định lí Thales, ta được \(\frac = \frac = \frac\).

Mà CK = CA (C là trung điểm AK).

Suy ra MI = IH.

Do đó I là trung điểm của MH.

Vậy BC đi qua trung điểm I của đoạn MH.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư