Cho nửa đường tròn tâm O, đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.
a) Chứng minh tam giác COD vuông tại O.
b) Chứng minh AC.BD = R2.
c) Kẻ MH vuông góc với AB (H ∈ AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Đường tròn (O) có hai tiếp tuyến AC, MC cắt nhau tại C.
Suy ra OC là tia phân giác của \(\widehat {AOM}\) (tính chất hai tiếp tuyến cắt nhau).
Do đó \(2\widehat {AOC} = 2\widehat {COM} = \widehat {AOM}\).
Chứng minh tương tự, ta được \(2\widehat {MOD} = 2\widehat {DOB} = \widehat {MOB}\).
Ta có \(\widehat {AOM} + \widehat {MOB} = 180^\circ \) (kề bù).
Suy ra \(2\widehat {COM} + 2\widehat {MOD} = 180^\circ \).
Khi đó \(2\left( {\widehat {COM} + \widehat {MOD}} \right) = 180^\circ \).
Vì vậy \(\widehat {COD} = 180^\circ :2 = 90^\circ \).
Vậy tam giác COD vuông tại O.
b) Đường tròn (O) có hai tiếp tuyến AC, MC cắt nhau tại C.
Suy ra AC = MC (tính chất hai tiếp tuyến cắt nhau).
Chứng minh tương tự, ta được DM = BD.
Ta có CD là tiếp tuyến của (O) có M là tiếp điểm. Suy ra OM ⊥ CD.
Tam giác COD vuông tại O có OM là đường cao: OM2 = CM.DM.
⇔ R2 = AC.BD.
Vậy ta có điều phải chứng minh.
c) Gọi I là giao điểm của MH và BC, K là giao điểm của MB và AC.
Đường tròn (O) có hai tiếp tuyến DM, DB cắt nhau tại D.
Suy ra DM = DB.
Lại có OM = OB = R.
Suy ra OD là đường trung trực của đoạn MB.
Do đó OD ⊥ MB.
Mà OD ⊥ OC (tam giác COD vuông tại O).
Suy ra MB // OC.
Mà O là trung điểm AB (đường tròn (O) có AB là đường kính).
Do đó OC là đường trung bình của tam giác ABK.
Vì vậy C là trung điểm AK.
Ta có MH ⊥ AB (giả thiết) và AK ⊥ AB (do AK là tiếp tuyến của (O) tại A).
Suy ra MH // AK.
Áp dụng định lí Thales, ta được \(\frac = \frac = \frac\).
Mà CK = CA (C là trung điểm AK).
Suy ra MI = IH.
Do đó I là trung điểm của MH.
Vậy BC đi qua trung điểm I của đoạn MH.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |