Cho tam giác ABC vuông tại B, đường trung tuyến BM, đường cao BH. Lấy E đối xứng với B qua M.
a) Chứng minh tứ giác ABCE là hình chữ nhật.
b) Qua E kẻ đường thẳng song song với AC cắt BC tại D, cắt BH tại I. Chứng minh tứ giác ACDE là hình bình hành.
c) Chứng minh EI // AM.
d) Chứng minh tứ giác AIEC là hình thang cân.
e) Tam giác ABC cần thêm điều kiện gì để ABCE là hình vuông?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có M là trung điểm AC (giả thiết) và M là trung điểm BE (E là điểm đối xứng với B qua M).
Suy ra tứ giác ABCE có hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Do đó tứ giác ABCE là hình bình hành.
Mà \[\widehat {ABC} = 90^\circ \].
Vậy tứ giác ABCE là hình chữ nhật.
b) Ta có AE // CD (do tứ giác ABCE là hình chữ nhật) và DE // AC (giả thiết).
Vậy tứ giác tứ giác ACDE là hình bình hành.
c) Vì M thuộc AC, I thuộc DE và AC // DE (giả thiết).
Vậy EI // AM.
d) Ta có HM // IE (giả thiết) và M là trung điểm của BE (chứng minh trên).
Suy ra HM là đường trung bình của tam giác BIE.
Do đó H là trung điểm của BI.
Mà BI ⊥ AH (giả thiết).
Vì vậy AH là đường trung trực của đoạn BI.
Suy ra AB = AI.
Mà AB = CE (ABCE là hình chữ nhật).
Khi đó AI = CE.
Tứ giác AIEC, có: AI = CE (chứng minh trên) và IE // AC (giả thiết).
Vậy tứ giác AIEC là hình thang cân.
e) Ta có tứ giác ABCE là hình chữ nhật (kết quả câu a).
Để tứ giác ABCE là hình vuông thì cần thêm điều kiện AB = BC.
Vậy tam giác ABC vuông cân tại B thì tứ giác ABCE là hình vuông.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |