Chứng minh rằng 2n3 + 3n2 + n chia hết cho 6 với mọi số nguyên n.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
2n3 + 3n2 + n
= n (2n2 + 3n + 1)
= n (2n2 +2n + n + 1)
= n [2n (n + 1) + (n + 1)]
= n (n + 1) (2n + 1)
= n (n + 1) (2n – 2 + 3)
= n (n + 1) (2n – 2) + 3n (n + 1)
= 2n (n + 1) (n – 1) + 3n (n + 1)
Ta thấy: n – 1; n và n + 1 là 3 số nguyên liên tiếp nên tích của chúng chia hết cho 3.
Vì 2 ⋮ 2 nên 2n (n + 1) (n – 1) ⋮ 2
Vậy 2n (n + 1) (n – 1) ⋮ 6. (1)
Lại có: 3 ⋮ 3 nên 3n (n + 1) ⋮ 3
Mà n, n + 1 là 2 số nguyên liên tiếp nên n (n + 1) ⋮ 2
Vậy 3n (n + 1) ⋮ 6. (2)
Từ (1) và (2) suy ra: 2n (n + 1) (n – 1) + 3n (n + 1) ⋮ 6
Vậy 2n3 + 3n2 + n ⋮ 6.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |