Bài tập  /  Bài đang cần trả lời

Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

1 Xem trả lời
Hỏi chi tiết
18
0
0
Tôi yêu Việt Nam
13/09 22:53:13

Ta lập dãy số như sau:

Đặt B1 = a1

B2 = a1 + a2

B = a1 + a2 + a3

….

B10 = a1 + a2 + a3 + … + a10

Nếu tồn tại Bi (i = 1, 2, 3, …, 10) nào đó chia hết cho 10 thì bài toán được chứng minh

Nếu không tồn tại Bi thì:

Ta đem Bi chia cho 10 sẽ được 10 số dư (các số dư từ 1 đến 9), Theo nguyên tắc Dirichlet, phải có ít nhất 2 số dư bằng nhau.

Các số Bm – Bn chia hết cho 10 (m > n)

Vậy thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×