Có thể lập được bao nhiêu số tự nhiên có 4 chữ số luôn có mặt chữ số 1.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi số cần lập là abcd¯ (a ∈ {1; 2; ...; 9}; b, c, d ∈ {0; 1; ...; 9}).
Vì luôn có mặt chữ số 1 nên ta có 2 trường hợp sau:
TH1: a = 1, khi đó có 10 cách chọn b, 10 cách chọn c và 10 cách chọn d.
Suy ra có 103 = 1000 số thỏa mãn.
TH2: a ≠ 1, a có 8 cách chọn.
Có 3 cách chọn vị trí bắt buộc để có mặt chữ số 1 là ở b hoặc c hoặc d.
Hai chữ số còn lại, mỗi chữ số có 10 cách chọn.
Suy ra trường hợp này có 8 . 3 . 102 = 2400 số thỏa mãn.
Vậy có tất cả 1000 + 2400 = 3400 số thỏa mãn.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |