Bài tập  /  Bài đang cần trả lời

Từ một điểm M ở ngoài đường tròn (O), vẽ hai tiếp tuyến MA, MB đến đường tròn (A, B là hai tiếp điểm). Qua A vẽ đường thẳng song song với MB, cắt đường tròn tại E, đoạn thẳng ME cắt đường tròn tại F. Hai đường thẳng AF và MB cắt nhau tại I. a) Chứng minh tứ giác MAOB nội tiếp đường tròn. b) Chứng minh \(I{B^2} = IF.IA.\) c) Chứng minh IB = IM.

Từ một điểm M ở ngoài đường tròn (O), vẽ hai tiếp tuyến MA, MB đến đường tròn (A, B là hai tiếp điểm). Qua A vẽ đường thẳng song song với MB, cắt đường tròn tại E, đoạn thẳng ME cắt đường tròn tại F. Hai đường thẳng AF và MB cắt nhau tại I.

a) Chứng minh tứ giác MAOB nội tiếp đường tròn.

b) Chứng minh \(I{B^2} = IF.IA.\)

c) Chứng minh IB = IM.

1 Xem trả lời
Hỏi chi tiết
33
0
0
Đặng Bảo Trâm
13/09/2024 23:01:30

a) Vì MA, MB là tiếp tuyến của (O) nên MA ⊥ AO, MB ⊥ BO.

⇒ \(\widehat {MAO} = \widehat {MBO} = 90^\circ \)

⇒ \(\widehat {MAO} + \widehat {MBO} = 180^\circ \)

⇒ MAOB là tứ giác nội tiếp đường tròn (dpcm)

b) Ta có: \(\widehat {FAB} = \widehat {FBI}\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung BF)

Xét \(\Delta IAB\) và \(\Delta IBF\) có:

\(\widehat {IAB} = \widehat {IBF}\left( {cmt} \right)\)

\(\widehat {AIB}\) chung

Do đó \(\Delta IAB\) ᔕ \(\Delta IBF\left( {g.g} \right)\)

Suy ra \(\frac = \frac\) hay IB2 = IA.IF.

c) Ta có: \(\widehat {MAI} = \widehat {AEF}\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung AF)

Vì AE // MB nên \(\widehat {AEF} = \widehat {FMI}\)

Suy ra \(\widehat {MAI} = \widehat {FMI}\)

Xét \(\Delta MAI\) và \(\Delta FMI\) có:

\(\widehat {MAI} = \widehat {FMI}\,\,\left( {cmt} \right)\)

\(\widehat {MIA}\) chung

Do đó \(\Delta MAI\) ᔕ \(\Delta FMI\,\,\left( {g.g} \right)\)

Suy ra \(\frac = \frac\) hay IM2 = IA.IF.

Kết hợp với ý b ta có IB2 = IM2 = IA.IF ⇒ IB = IM (dpcm)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×