Cho tam giác ABC cân (AB = AC). Gọi H là trung điểm của cạnh BC, D là hình chiếu vuông góc của H trên cạnh AC, M là trung điểm của đoạn HD. Chứng minh rằng AM vuông góc với BD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta chứng minh: \(\overrightarrow {AM} \,.\,\overrightarrow {DB} = 0\)
Ta có: \[\overrightarrow {BD} = \overrightarrow {BH} + \overrightarrow {HD} = \overrightarrow {HC} + \overrightarrow {HD} \]
\(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AH} + \overrightarrow {AD} } \right)\)
Do đó: \(\overrightarrow {AM} \,.\,\overrightarrow {DB} = \frac{1}{2}\left( {\overrightarrow {AH} + \overrightarrow {AD} } \right)\left( {\overrightarrow {HC} + \overrightarrow {HD} } \right)\)
\( = \frac{1}{2}\left( {\overrightarrow {AH} \,.\,\overrightarrow {HC} + \overrightarrow {AH} \,.\,\overrightarrow {HD} + \overrightarrow {AD} \,.\,\overrightarrow {HC} + \overrightarrow {AD} \,.\,\overrightarrow {HD} } \right)\)
Mà: \(\left\{ \begin{array}{l}\overrightarrow {AH} \,.\,\overrightarrow {HC} = 0\;\left( {do\;AH \bot BC} \right)\\\overrightarrow {AD} \,.\,\overrightarrow {HD} = 0\;\left( {do\;AC \bot HD} \right)\end{array} \right.\)
Do đó: \(\overrightarrow {AM} \,.\,\overrightarrow {DB} = \frac{1}{2}\left( {\overrightarrow {AH} \,.\,\overrightarrow {HD} + \overrightarrow {AD} \,.\,\overrightarrow {HC} } \right)\)
\( = \frac{1}{2}\left[ {\overrightarrow {AH} \,.\,\overrightarrow {HD} + \left( {\overrightarrow {AH} + \overrightarrow {HD} } \right)\,.\,\overrightarrow {HC} } \right]\)
\( = \frac{1}{2}\left( {\overrightarrow {AH} \,.\,\overrightarrow {HD} + \overrightarrow {HD} \,.\,\overrightarrow {HC} } \right)\)vì\(\overrightarrow {AH} \,.\,\overrightarrow {HC} = 0\)
\(\overrightarrow {AM} \,.\,\overrightarrow {DB} = \frac{1}{2}\overrightarrow {HD} \left( {\overrightarrow {AH} + \,\overrightarrow {HC} } \right) = \frac{1}{2}\overrightarrow {HD} \,.\,\overrightarrow {AC} = 0\) (vì AC ^ HD)
Vậy AM ^ DB.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |