Cho hình chóp tam giác đều A.BCD có cạnh đáy bằng 12 cm, cạnh bên bằng 10 cm như (H.10.20). Tính diện tích xung quanh của hình chóp.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Ta có DH là đường cao của tam giác BCD.
Vì tam giác BCD đều nên BC = DB = CD = 12 cm và DH là đường cao đồng thời là đường trung tuyến của tam giác. Do đó, \(HC = \frac{1}{2}CB = 6\) cm.
Tam giác ABC cân tại A nên AH là đường trung tuyến đồng thời là đường cao, vậy AH là một trung đoạn của hình chóp A.BCD.
Áp dụng định lí Pythagore vào tam giác CHA vuông tại H có:
HA2 + HC2 = CA2
Suy ra HA2 = CA2 – CH2 = 102 – 62 = 64 nên HA = 8 cm.
Chu vi tam giác DBC là: BD + BC + CD = 12 + 12 + 12 = 36 (cm).
Diện tích xung quanh hình chóp là:
\({S_{xq}} = p \cdot d = \frac{1}{2} \cdot 36 \cdot 8 = 144\) (cm2).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |