Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Kẻ BH ⊥ AC tại H
Xét ∆ABH vuông tại H, ta có:
\[sinA = \frac\] ⇒ BH = AB . sinA
Mặt khác \({S_{\Delta ABC}} = \frac{1}{2} \cdot BH \cdot AC = \frac{1}{2} \cdot AB \cdot AC \cdot \sin A\)
Ta có: AB + AC = 8 cm
\[ \Rightarrow 0 \le AB{\rm{ }}.{\rm{ }}AC \le {\left( {\frac{2}} \right)^2} = 16\] (BĐT Cauchy)
\({S_{\Delta ABC}} \le \frac{1}{2} \cdot 16 \cdot \sin 60^\circ = 4\sqrt 3 \)(cm2)
Dấu bằng xảy ra khi và chỉ khi AB = AC = 4 (cm).
Vậy diện tích lớn nhất của tam giác ABC là \(4\sqrt 3 \)cm2 khi AB = AC = 4 cm.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |