Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC, \(\widehat A = {60^{\rm{o}}}\), AB + AC = 8cm. Tính giá trị lớn nhất của diện tích tam giác ABC.

Cho tam giác ABC, \(\widehat A = {60^{\rm{o}}}\), AB + AC = 8cm. Tính giá trị lớn nhất của diện tích tam giác ABC.
1 Xem trả lời
Hỏi chi tiết
11
0
0
Nguyễn Thanh Thảo
13/09/2024 23:00:33

Lời giải  

Kẻ BH ⊥ AC tại H

Xét ∆ABH vuông tại H, ta có:

\[sinA = \frac\] ⇒ BH = AB . sinA

Mặt khác \({S_{\Delta ABC}} = \frac{1}{2} \cdot BH \cdot AC = \frac{1}{2} \cdot AB \cdot AC \cdot \sin A\)

Ta có: AB + AC = 8 cm

\[ \Rightarrow 0 \le AB{\rm{ }}.{\rm{ }}AC \le {\left( {\frac{2}} \right)^2} = 16\] (BĐT Cauchy)

\({S_{\Delta ABC}} \le \frac{1}{2} \cdot 16 \cdot \sin 60^\circ = 4\sqrt 3 \)(cm2)

Dấu bằng xảy ra khi và chỉ khi AB = AC = 4 (cm).

Vậy diện tích lớn nhất của tam giác ABC là \(4\sqrt 3 \)cm2 khi AB = AC = 4 cm.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×