Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Với m = 0 hàm số không xác định
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{m^2}{x^2} + m - 1} }} = \mathop {\lim }\limits_{x \to - \infty } \frac}{{ - \sqrt {{m^2} + \frac{{{x^2}}}} }} = \frac{{ - 1}}{{\left| m \right|}}\)
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{m^2}{x^2} + m - 1} }} = \mathop {\lim }\limits_{x \to + \infty } \frac}{{\sqrt {{m^2} - \frac{{{x^2}}}} }} = \frac{1}{{\left| m \right|}}\)
Suy ra đồ thị hàm số luôn có 2 tiệm cận ngang
Để đồ thị hàm số có 4 tiệm cận thì cần có thêm 2 tiệm cận đứng
⇒ m2x2 + m – 1 = 0 có 2 nghiệm phân biệt
\( \Rightarrow {x^2} = \frac{{{m^2}}}\)
Do x2 > 0 ⇒ 1 – m > 0 ⇒ m < 1
Vậy \(\left\{ \begin{array}{l}m < 1\\m \ne 0\end{array} \right.\) thì đồ thị hàm số có 4 tiệm cận.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |