Cho tam giác ABC. Tập hợp các điểm M sao cho
\(\left( {\overrightarrow {MB} + \overrightarrow {MC} } \right)\left( {\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right) = 0\) là một đường tròn.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi I, J lần lượt là trung điểm của BC, AC.
K là trọng tâm của tam giác JBC ta có:
\(\left( {\overrightarrow {MB} + \overrightarrow {MC} } \right)\left( {\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right) = 0\)
\( \Leftrightarrow 2\overrightarrow {MI} \left[ {\left( {\overrightarrow {MA} + \overrightarrow {MC} } \right) + 2\overrightarrow {MB} + 2\overrightarrow {MC} } \right] = 0\)
\( \Leftrightarrow 2\overrightarrow {MI} \left( {2\overrightarrow {MJ} + 2\overrightarrow {MB} + 2\overrightarrow {MC} } \right) = 0\)
\( \Leftrightarrow 4\overrightarrow {MI} \left( {\overrightarrow {MJ} + \overrightarrow {MB} + \overrightarrow {MC} } \right) = 0\)
\( \Leftrightarrow 4\overrightarrow {MI} .3\overrightarrow {MK} = 0\)
\( \Leftrightarrow \overrightarrow {MI} .\overrightarrow {MK} = 0\)
⇒ MI⊥MK \( \Rightarrow \widehat {IMK} = 90^\circ \)
Do đó điểm M luôn nhìn đoạn IK một góc 90° hay tập hợp điểm M cần tìm là đường tròn đường kính IK.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |