Cho đường tròn (O; R), đường kính AB và tiếp tuyến Ax. Từ điểm C thuộc Ax, kẻ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Gọi giao điểm của CO và AD là I. Gọi giao điểm của CB và đường tròn (O) là E (E ≠ B). Chứng minh CE.CB = CI.CO.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét ∆CED và ∆CDB, có:
\[\widehat C\] chung
\[\widehat {CDE} = \widehat {CBD}\] (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung).
Do đó ∆CED ᔕ ∆CDB (g.g)
Suy ra \[\frac = \frac\]
Do đó CE.CB = CD2 (3)
Xét ∆CDO vuông tại D có DI là đường cao:
CD2 = CI.CO (hệ thức lượng trong tam giác vuông) (4)
Từ (3), (4), suy ra CE.CB = CI.CO (đpcm)
Vậy CE.CB = CI.CO.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |